Raíz n-ésima y radicales: definición, propiedades y ejemplos
Aprende qué es la raíz n-ésima y los radicales: definición, propiedades, ejemplos resueltos, reglas de operación e interpretación intuitiva para dominar potencias y raíces.
Una raíz n-ésima de un número r es un número que, si se multiplica por sí mismo n veces, da r. También se llama radical o expresión radical. Se puede decir que es un número k para el que la siguiente ecuación es verdadera:
k n = r {\displaystyle k^{n}=r}
En notación de potencias, esto significa que k elevado a la n es igual a r (ver exponenciación). Para la expresión de la potencia escribimos k n {designar k^{n}} .
Notación y elementos
La raíz n-ésima de r se escribe así:
r n {\displaystyle {\sqrt[{n}]{r}}
En esa notación: radicando es el número debajo del símbolo (aquí r), índice es n (indica la raíz: 2 → cuadrada, 3 → cúbica, etc.) y la parte con forma de tilde es el símbolo radical o signo radical.
Ejemplo básico
Por ejemplo,
8 3 = 2 {\displaystyle {\sqrt[{3}]{8}}=2} porque 2 3 = 8 {\displaystyle 2^{3}=8}
.
Raíz principal y signos
Cuando hablamos de la raíz n-ésima sin más precisiones, normalmente nos referimos a la raíz principal, que es:
- no negativa si n es par y el radicando es positivo (por ejemplo, la raíz cuadrada principal de 9 es 3, no −3);
- la única raíz real si n es impar (por ejemplo, la raíz cúbica de −8 es −2).
En el caso de índices pares y radicando positivo existen dos raíces reales (±k), pero por convención la raíz indicada por el símbolo radical es la raíz no negativa. Para radicandos negativos y n par no existe raíz real, aunque sí existen raíces complejas (en total hay n raíces complejas distintas, distribuidas en el plano complejo).
Conversión entre raíces y potencias
Las raíces y las potencias se relacionan mediante exponentes racionales. En general:
Las raíces y las potencias pueden cambiarse como se muestra en x a b = x a b = ( x b ) a = ( x a ) 1 b {\displaystyle {\sqrt[{b}]{x^{a}}=x^{\frac {a}{b}}=({\sqrt[{b}]{x})^{a}=(x^{a})^{\frac {1}{b}}.
Esto permite trabajar con raíces como potencias racionales: por ejemplo, la raíz n-ésima de x es x^{1/n}.
Propiedades útiles de radicales
Muchas propiedades se aplican siempre que las expresiones estén definidas (por ejemplo, para raíces pares se requiere radicando ≥ 0). Entre las más usadas:
- Producto: para índices pares o cuando las raíces están definidas, a b = a × b {\a}}= {cuadrado de {ab}} por {cuadrado de {a}}}
. Es decir, √(ab) = √a · √b cuando ambas raíces están definidas.
- Cociente: análogamente, a b = a b {{sqrt {\frac {a}{b}}={frac {\sqrt {a}}{{sqrt {b}}}}
. Es decir, √(a/b) = √a / √b siempre que b>0 (y para índices pares también a≥0).
- Potencia de una raíz: (√[b]{x})^{a} = x^{a/b}, según la conversión anterior.
- Suma y resta: sólo se pueden combinar radicales semejantes (mismo índice y mismo radicando o que se puedan transformar en radicandos iguales tras simplificar). Por ejemplo, √18 + √8 = 3√2 + 2√2 = 5√2.
Cómo simplificar radicales
Para simplificar una raíz n-ésima de un número entero o expresión algebraica:
- factoriza el radicando en factores primos o como potencias perfectas;
- extrae los factores que son potencias de orden n fuera del símbolo radical;
- deja dentro del radical el resto de factores cuyo exponente es menor que n.
Ejemplos:
- √{72} = √(36·2) = √36 · √2 = 6√2.
- ∛{54} = ∛(27·2) = ∛27 · ∛2 = 3∛2.
- Para potencias racionales: x^{7/3} = (x^{1/3})^{7} = (∛x)^{7} = (∛x)^{6}·∛x = (∛x)^{6}·∛x = x^{2}·∛x.
Racionalización del denominador
Cuando aparece una raíz en el denominador es común eliminarla multiplicando numerador y denominador por un factor conveniente:
- Para 1/√a, multiplicar por √a/√a para obtener √a/a.
- Para denominadores con raíces cúbicas u órdenes superiores, la racionalización puede requerir multiplicar por una suma adecuada (usando factorizaciones como (x³−y³) o multiplicar por potencias del radical hasta obtener un exponente múltiplo del índice).
Casos especiales y consideraciones
- Si el índice n es par, el radicando debe ser ≥ 0 para que exista raíz real.
- Si el índice n es impar, la raíz real existe para cualquier radicando real (incluyendo negativos).
- Al resolver ecuaciones con radicales (por ejemplo, con raíces cuadradas), al elevar ambos lados a una potencia puede aparecer soluciones extraviadas; por eso siempre hay que verificar las soluciones en la ecuación original.
- En el campo complejo, una raíz n-ésima de un número no nulo tiene exactamente n valores distintos; la raíz indicada por el símbolo radical es la raíz principal según la convención escogida.
Ejemplos resueltos
- √{50} = √(25·2) = 5√2.
- ∛{-125} = -5 (porque (-5)³ = -125 y el índice 3 es impar).
- Simplificar √[4]{16x^{8}}: 16 = 2^{4} y x^{8} = (x^{2})^{4}, luego √[4]{16x^{8}} = 2x^{2} (tomando la raíz principal si x está en el dominio apropiado).
- Combinar: √18 + √8 = 3√2 + 2√2 = 5√2.
- Racionalizar: 1/(1+√2) — para racionalizar se multiplica por (1−√2)/(1−√2) y se obtiene (1−√2)/(1−2) = (√2−1).
Las propiedades aquí expuestas facilitan el cálculo y la simplificación de expresiones que involucran raíces y permiten pasar entre la notación de radicales y la de potencias racionales (ver exponenciación). Para operaciones más avanzadas, como raíces de números complejos o simplificación sistemática en álgebra simbólica, se usan técnicas adicionales (forma polar, fórmula de De Moivre, etc.).
Simplificando
Este es un ejemplo de cómo simplificar un radical.
8 = 4 × 2 = 4 × 2 = 2 2 {{sqrt {8}}={sqrt {4}}={sqrt {4}}=2{sqrt {2}}
Si dos radicales son iguales, pueden combinarse. Esto ocurre cuando ambos índices y radicandos son iguales.
2 2 + 1 2 = 3 2 {{desde el punto de vista del estilo 2}+1{{desde el punto de vista del cuadrado {2}}=3{desde el punto de vista del cuadrado {2}}
2 7 3 - 6 7 3 = - 4 7 3 {{situación}} 2{sqrt[{3}]{7}}-6{sqrt[{3}]{7}}=-4{sqrt[{3}]{7}}
Así se encuentra el cuadrado perfecto y se racionaliza el denominador.
8 x x 3 = 8 x x x = 8 x × x x = 8 x x 2 = 8 x x {\displaystyle {\frac {8x}{{sqrt {x}}^{3}}={\frac {8{cancel {x}}{{cancel {x}}{sqrt {x}} {x}}}}={frac {8}{sqrt {x}}={frac {8}{sqrt {x}}veces {{frac {\sqrt {x}}{sqrt {x}}={frac {8{sqrt {x}}{{sqrt {x}^{2}}={frac {8{sqrt {x}}{x}}
Páginas relacionadas
- Racionalización (matemáticas)
Preguntas y respuestas
P: ¿Qué es una raíz n-ésima?
R: Una raíz n-ésima de un número r es un número que, si se multiplica por sí mismo n veces, produce el número r.
P: ¿Cómo se escribe una raíz n-ésima?
R: Una raíz n-ésima de un número r se escribe como r^(1/n).
P: ¿Cuáles son algunos ejemplos de raíces?
R: Si el índice (n) es 2, la expresión radical es una raíz cuadrada. Si es 3, se trata de una raíz cúbica. Para referirse a otros valores de n se utilizan números ordinales como raíz cuarta y raíz décima.
P: ¿Qué establece la propiedad producto de una expresión radical?
R: La propiedad producto de una expresión radical establece que sqrt(ab) = sqrt(a) x sqrt(b).
P: ¿Qué establece la propiedad de cociente de una expresión radical?
R: La propiedad de cociente de una expresión radical establece que sqrt(a/b) = (sqrt(a))/(sqrt(b)), donde b != 0.
P: ¿Qué otros términos se pueden utilizar para referirse a una raíz n-ésima?
R: Una raíz n-ésima también puede denominarse radical o expresión radical.
Buscar dentro de la enciclopedia

